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1 Introduction

Automated program verifiers (or program verifiers in short) are tools that take as input a program, a
formal specification, and potential annotations, and try to automatically establish that the program satisfies
the specification, or point out the part of the program that may have an error. A program verifier should be
sound, in the sense that the verifier reports success only if the input program is correct. However, the
soundness of program verifiers themselves is usually unverified. Most program verifiers (such as Why3,
Dafny, and Viper [3,4,5]) are implemented in complex high-level languages, have large implementations,
and are subject to rapid changes. As a result, bugs can and do arise in these implementations, and thus we
want an approach to formally ensure that program verifiers are sound.

Many program verifiers are translational program verifiers that translate a front-end program into some
intermediate verification language (IVL). An IVL comes with its own back-end verifier that translates the
IVL program into a set of formulas whose validity is checked using an SMT solver. Soundness of such a
program verifier can be guaranteed by establishing the soundness of each translation: (1) Front-end
soundness: the correctness of the IVL program implies the correctness of the front-end program, (2) IVL
back-end soundness: validity of the formulas implies correctness of the IVL program.

Recent work by Parthasarathy et al. [1] offers an approach to formally establish the front-end soundness
for translational program verifier implementations. Proving the correctness of such implementations once
and for all is practically infeasible, since these implementations are large and are usually written in
languages that lack a formalization. Parthasarathy et al. instead propose to instrument the existing
implementation to generate a certificate every time the implementation is run. They apply their approach
to one of the Viper [5] verifiers (a verifier based on separation logic [10]), which translates input Viper
programs into the Boogie IVL [6] (the Boogie verifier then translates the Boogie program to a set of
formulas). That is, their instrumented version of the Viper-to-Boogie translation produces an Isabelle [7]
proof stating that if the Boogie program, emitted on that particular run, is correct, then the source Viper
program is also correct w.r.t. the Viper semantics.

This proof generation method, along with the authors’ work on generating Boogie-to-SMT certificates [2],
gives strong guarantees of the correctness of a successful Viper verifier invocation. This methodology
shows promising results and feasibility of the general approach. However, the current implementation
covers only a core subset of the Viper language, which in particular does not include separation logic
predicates and heap-dependent functions. In Viper, predicates are the main mechanism for abstracting
separation logic resources [9], and the only direct way to describe ownership of recursive data structures,



such as lists and trees. Functions are pure procedures to describe functional properties of these data
structures (e.g., the length or the elements in a linked list). These two features are used in realistic
program verification ubiquitously. Therefore, it is essential to add support for these features to the proof
generation if we want the proof generation also to cover the correctness of a large class of real-world
programs.

This project aims to extend the current Viper-to-Boogie proof generation framework to support
(recursively-defined) predicates and optionally functions. A brief description of the existing framework
and potential challenges are presented in Section 2. The goals and the concrete work to be carried out are
outlined in Section 3.

2 Approach and Challenges

The project is based on the Viper-to-Boogie translator, the verification-condition-generation-based
back-end of Viper. The translation and verification framework and relevant semantics for proof generation
are illustrated in Figure 1.

Figure 1. The Viper-to-Boogie translator and its proof generation framework.

The upper half of Figure 1 illustrates how the Viper-to-Boogie translation and verification work as
explained in the introduction. The lower half of the figure illustrates several semantics that are used to
justify the correctness of a Viper program translation. They are already partially formalized in Isabelle.
THSem is a Viper semantics that reflects how predicates are treated operationally in Viper. It is the
semantics that is used by the proof-producing Viper-to-Boogie implementation (which does not yet
support predicates itself). EquiSem on the left intends to be a more high-level and intuitive semantics for
Viper programs. The Boogie semantics on the right describes the expected behavior of a Boogie program.
We introduce THSem and EquiSem in more detail below.

THSem (total heap semantics) is a Viper semantics designed to reflect how (recursive) predicates are
treated in Viper. Viper (and in general other separation-logic-based verifiers) treats Viper predicates
isorecursively: a predicate instance is differentiated from its body, and a conversion between the two is
achieved by explicit fold and unfold statements (possibly through heuristics-based inference). To reflect
this, THSem also treats a predicate instance and its body differently in the program state. However,
treating predicate instances and the permissions in their bodies differently complicates the design of



THSem. The disparity is reflected by a total heap semantics design, in the sense that information can still
be stored in the state even if it holds no permission to the location. The total heap design and the
coexistence of predicates and memory locations requires a notion of state consistency, since we need to
exclude any states that are not consistent under any unfolding operations (that is, operations that replace a
predicate instance by the resources in its body). In summary, we have to account for these challenges in
this project and formalize the correct semantics of predicates in THSem (not all parts related to predicates
have been formalized in THSem yet).

EquiSem (equirecursive semantics) is a more high-level Viper semantics to reflect the intuitive meaning
of a predicate. In this semantics, a predicate instance is treated as equivalent to its body, using the least
fixed-point interpretation. Therefore, the effects of fold and unfold statements in Viper source programs
are completely nullified. That is, they can be removed from the program without affecting the program
behavior. As opposed to THSem, the program state in EquiSem is a partial heap, as is standard in
separation logic.

There are two important goals in this project. The first goal is to prove that if the Boogie program is
correct, then the Viper program, possibly containing predicates, is correct w.r.t. THSem, which we will
achieve by extending the proof-producing instrumentation of the Viper-to-Boogie implementation. The
second goal is to increase the confidence that THSem describes a meaningful semantics for predicates by
showing that a correct Viper program w.r.t. THSem implies correctness w.r.t. EquiSem. The tasks of this
project mainly concern the first goal, but also touch the second goal (i.e. connection to EquiSem) as we
explain in the next section.

3 Goals

The four core goals are marked with circled numbers in Figure 1 to illustrate which part they concern.

3.1 Core Goals

1. Define and formalize (in Isabelle) the semantics for predicates in THSem, supporting fold and
unfold statements and unfolding expressions with fractional permissions [8]. This will require
adjusting the semantics of exhale to also support predicates and defining a notion of consistency
for THSem states.

2. Design an approach to extend the semantics from core goal 1 to functions. Since functions also
need to be supported in this framework eventually (potentially outside of this project) and they
interact with predicates subtly, we need to be careful in our design of the semantics of predicates
and consider the possibility of supporting functions later on.

3. Connect the extended THSem from core goal 1 to EquiSem by connecting THSem states to
EquiSem states. This will increase the confidence in our extension to THSem. Doing a full proof
connecting THSem and EquiSem requires significant effort which might not be possible under the
time constraint of this project, so we will only try to connect THSem states to EquiSem states,
which constitutes the basis of a THSem-to-EquiSem proof.



4. Extend the Viper-to-Boogie proof generation to support predicates, which on every run of the
implementation automatically generates an Isabelle proof showing that if a Boogie program is
correct, then so is the Viper program w.r.t. THSem. This will be an extension to the existing
proof-producing Viper-to-Boogie implementation [1].

3.2 Extension Goals

1. Further extend the semantics and the proof generation framework to support wildcard
permissions, repeating the core goals for these features.

2. Formalize the semantics of functions, and repeat the core goals 3 and 4 for functions.
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