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Abstract

As computer programs get ever more complex they are more prone to
bugs and security vulnerabilities. Formal verification techniques can be
applied to get guarantees for the correct behavior of programs for any
execution and thus keep this complexity in check. Verification infras-
tructures that automatically apply these techniques thus get increasingly
important. Viper provides such a verification infrastructure through
its intermediate verification language and its two back-end verifiers. It
uses separation logic to allow reasoning about heap-manipulating and
concurrent programs. In particular, it uses permissions encoded as frac-
tional values representing read and write privileges to heap locations.
Wildcards are a means for representing unspecified positive permission
amounts. They can be used, among other things, for encoding read
permissions to heap locations for concurrent programs. In this thesis
we explore an alternative representation for such wildcard permission
amounts in Viper with an emphasis on performance.
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Chapter 1

Introduction

We want our programs to be fast, secure and reliable. Achieving all three of
these goals is increasingly difficult, as programs get larger and more complex.
Such complex software is infamous for the difficulty of finding implementa-
tion bugs and critical security vulnerabilities. To prevent them from occurring
in the first place, it is thus ever more important to be able to formally verify
the correctness of such programs. This provides guarantees that programs
behave as expected for any execution and thus allows programmers to keep
the complexity in check.

The Viper verification infrastructure [6] tries to tackle this challenge by provid-
ing an intermediate verification language that specializes in the verification
of heap-manipulating programs. At the heart of Viper is a permission model
that allows for the reasoning about heap-manipulating programs and thread
interactions in concurrent software. Various existing automatic verifiers for
programming languages such as Python, Rust, Go, and Java verify programs
by translation to Viper. There also exist two interchangeable verification
back-ends called Carbon and Silicon, both of which use an SMT solver called
z3 [2] for the verification. For a pictorial representation of this whole tool
chain see Figure 1.1.

Viper uses permissions to express ownership of heap locations. This permis-
sion system assigns heap locations a fraction between zero and one, where
no permission is held if the fractional amount is zero, read permission is
held if this fraction is positive and a write permission is held if the fraction is
equal to one. Viper provides a feature for representing unspecified positive
permission amounts called wildcards. They can for example be used to model
read permissions. We explore an alternative representation for wildcard
permissions in Viper inspired by the VeriFast verifier [4], which as the name
suggests is optimized for fast verification speeds. We implement this feature
in the Carbon back-end of Viper and our focus lies on the performance of
this alternative representation.
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1. Introduction

Figure 1.1: The Viper toolchain

Outline The next Chapter 2 will give some background on the verification
techniques employed by Viper, wildcard permissions and their encoding in
the Carbon back-end. Chapter 3 explains the proposed abstract wildcard
representation we explore in this thesis and show how we implemented it in
the Carbon back-end. We give a simplified proof for the soundness of the
proposed abstract wildcard representation in Chapter 4 and in Chapter 5
we evaluate the new representation against the current implementation. We
conclude in Chapter 6.
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Chapter 2

Background

In this chapter we explain the technical background for this project. First we
get into separation logic, then we focus on one particular extension of this
logic, namely fractional permissions. This will lead us to an explanation of
wildcard permission amounts and their encoding in Viper.

2.1 Separation Logic

Reasoning formally about programs that share mutable data structures is
critical for ensuring their correctness and security. Such programs can be-
come arbitrarily complex as any C programmer who has ever debugged
pointer errors knows. Separation Logic [7] provides a means for proving
formal properties about such programs while not being limited to concurrent
programs. It is an extension of Hoare Logic [3] that enables local reasoning
and the formalization of access rights to heap locations.

Partial Heaps Separation logic makes use of the concept of partial heaps.
They represents a part of the heap and are formally modeled as partial
functions, which map heap locations to values, e.g. x. f → 5, where x is a
reference to a heap location, f a field of this location and 5 is the value stored
on this location. A partial heap and a store, which maps the names of local
variables to their values are both part of the state.

Hoare Triples in Separation Logic As mentioned above, separation logic
extends Hoare Logic. The meaning of Hoare triples is modified but they still
have the same structure containing pre- and postconditions and a program.
A Hoare triple holds if and only if the program is executed in a starting state
satisfying the precondition then the final state satisfies the postcondition.
Separation logic adds deduction rules that allow the description of ownership
of heap locations that can be accessed and modified by the program.
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2. Background

Points-to Assertions An important type of assertion introduced by separa-
tion logic is the points-to assertion. We can think of it as a way of encoding
ownership of heap locations. Reading and writing operations on heap loca-
tions are only permitted if the state owns the corresponding heap locations.
For example, if we want to assert whether the partial heap of a state maps
the heap location x. f to the value v, the points-to assertion x. f → v can
be used. This ownership is also transferable from the caller to callee. For
example when a method holding some permission to a heap location calls
a subroutine the permission amount associated with this location can be
transferred to the subroutine.

Local Reasoning Separation Logic also enables local reasoning about pro-
grams which means properties can be proved on a small local state. These
proofs are then never affected by enlarging this state and the additional state
will also never be modified by the program. This is done by introducing a
new rule, the frame rule, enabling local reasoning. Modular verification is
thus possible which is important for the verification of large scale programs
since the complexity of algorithms verifying the validity of the specified
conditions grows linearly with the number of blocks and therefore they are
reasonably scalable.

Implicit dynamic frames Implicit dynamic frames[8] is a variant of separa-
tion logic and is used by Viper. It separates the permission amount held on
and the value of a heap location. Holding at least some fractional permission
p to a heap location x.f, where x is a reference and f a field can be asserted
separately form asserting that the value of x.f is equal to the value v. The
assertion acc(x.f, 1/2) && x.f == 0 for example is satisfied by a state if it
holds at least half permission to x.f, its partial heap contains x.f, and maps
the heap location x.f to the value 0. For ease of use Viper allows writing
assert x.f == v and automatically expands this assertion into the separating
conjunction assert acc(x.f) && x.f == v.

2.2 Fractional Permissions

Fractional permissions [1] are a generalization of the aforementioned points-
to assertion. They allow specifying ownership to heap locations at a more
fine-grained level. Instead of either owning or not owning a particular heap
location this allows the representation of different permission levels like read
and write or no permission. This generalization also applies to the transfer
of permission amounts. A caller can transfer a fraction of the the permission
it owns to one or multiple callees by splitting the held permission amount.

These permission levels are modeled as fractions between zero and one.
Where a zero represents that no permission to the given location is currently
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2.2. Fractional Permissions

held, a positive value means read permission and a one, also referred to as
full permission, means that a the heap location is writable. This abstraction
allows for the splitting of permission amounts to model concurrent programs
that share data on the heap. The sum of all of these fractional permission
amounts held on one specific heap location over the whole program must
never exceed one.

Verifiers like Viper [6] and VeriFast [4] use fractional permissions to model
permission levels to heap locations. We give an example of a Viper program
in Listing 2.1 to further illustrate this.

Listing 2.1: Example of permission transfer

0 f i e l d f : Int
1

2 method check3 ( x : Ref )
3 requires acc ( x . f , 1/2) && x . f == 3
4

5 method main ( x : Ref )
6 requires acc ( x . f , write )
7 requires x . f == 3
8 {
9 // 1/1 permission to x.f held

10 check3 ( x )
11 // 1/2 permission to x.f held

12 check3 ( x )
13 // 0 permission to x.f held

14

15 // following line raises verification error

16 var v := x . f
17 }

Pre- and postconditions are provided with the keywords requires and
ensures respectively. These act as interface definitions and instruct the verifier
to assume a given condition or assert that a condition holds respectively at
the start and the end of the program. Both methods main and check3 are
verified modularly where only the interface definitions but not the internals
are visible to one another.

Method main calls check3 twice and then tries to read from the heap location
x.f. The implementation of check3 is omitted and instead abstractly defined
through its pre- and postconditions. It simply asserts that the value stored in
heap location x.f is equal to three. To be able to read, it also has to hold at
least a positive permission amount on location x.f but check3 specifies that
it needs exactly 1/2 permission which is even stronger.

In order for main to be able to call check3 it has to have at least 1/2 permission
on heap location x.f to satisfy the precondition of check3. But since check3

does not ensure this permission amount in its postcondition main will not
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2. Background

get it back. Since main initially assumes full write permission it is able to call
check3 exactly twice because it transfers half of the permission to each call.

The verifier however still raises an error in line 16 since it holds no permission
to x.f at this point.

2.3 Inhale and Exhale

Pre- and postconditions can also be further generalized. Instead of only being
able to add assumptions and assertions to the start and end of a program
block it can be useful to do this at an arbitrary point in the program. The key-
word inhale is informally speaking used for adding a particular assumption
to the set of assumptions and if specified adding a permission amount to the
state. exhale is its counterpart and is used to subtract permission amounts
from the state and to assert certain properties.

This can for example be used to model locks, as the following program
implementing a model of a safe copy function in Listing 2.2 shows.

Listing 2.2: Modeling locks with inhale and exhale

0 f i e l d f : Int
1

2 method safe copy ( s r c : Ref , dst : Ref )
3 requires acc ( s r c . f , 1/8) {
4 // reading value from source

5 var v = s r c . f
6

7 // locking destination

8 inhale acc ( dst . f , write )
9

10 // critical section

11 dst . f := val
12

13 // unlocking destination

14 exhale acc ( dst . f , write )
15 }

The method safe_copy assumes that 1/8 permission amount on the location
of src.f is held initially. It is thus able to read from src.f in line 5. Inhaling
write permission to dst.f models locking since the invariant must hold that
the sum of permission amounts on a single heap location can maximally be
1/1. Exhaling write permission to dst.f models the release of the lock. Thus
the lines in between are in the critical section which means dst.f can safely
be written since only one method call of safe_copy can hold write permission
at once.
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2.4. Wildcard Permissions

2.4 Wildcard Permissions

Method safe_copy in Listing 2.2 specifies a concrete lower bound of 1/8 on
the amount of permission on src.f needed to be able to call it. This restricts
the use of this methods to at most eight concurrent method executions which
is limiting. To allow the specification of read permissions without the need
of nailing down a concrete fraction and thus restricting the maximal number
of concurrent executions modeled, Viper provides wildcard permissions
amounts.

2.4.1 Concrete Representation

We will call the wildcard currently implemented in Viper a concrete wildcard to
be able to distinguish it from the abstract wildcard examined in this thesis. Like
other permission amounts, concrete wildcards too are internally represented
as fractions. They represent an unspecified permission amount, known to be
greater than zero. This, for example, provides a convenient way to encode
read-only resources that can be shared among concurrent programs. This
means a Viper program owns a wildcard permission amount to x.f if and
only if there exists a fraction w ∈ Q∩ (0, 1] such that the program has at least
permission w to x. f .

2.4.2 Encoding

We give the encoding of concrete wildcards in this subsection to show their
working and how they interact with other Viper features.

Boogie The Viper back-end Carbon translates the Viper source code to its
corresponding representation in Boogie [5]. This is an intermediate verification
language like Viper that provides different abstractions. Boogie does not for
example have built-in support for separation logic or fractional permissions. It
is designed to provide reusable language features for representing verification
requirements and encoding imperative heap-based programs. Which is why
it is well suited as one of the two Viper back-end verifiers. Compiled Viper
programs are passed to the Boogie back-end which generates verification
conditions. These are then checked for satisfiability by an SMT solver, such
as z3 [2].

In Carbon permissions held on heap locations are encoded in Boogie maps
which are typed key-value stores. The key is a heap location and the value is
the corresponding fractional permission amount. The type of the fractional
amount is Perm which is an alias for the type of real numbers in Boogie. Even
though conceptually we work with fractions, real values are better supported
by Boogie.
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2. Background

We show the actual encoding by giving the translation of the simple Viper
program in Listing 2.3.

Listing 2.3: Inhaling, exhaling and reading with wildcards

0 f i e l d f : Int
1

2 method main ( x : Ref )
3 {
4 inhale acc ( x . f , wildcard )
5 exhale acc ( x . f , wildcard )
6

7 var v : Int := x . f
8 }

This program takes a reference to a heap location x as argument. It then
inhales a wildcard permission amount to location x.f in line 4 and exhales a
wildcard in the next line. Finally the heap location x.f is read. This program
passes verification since exhaling a wildcard permission amount means that
there exists some permission w ∈ Q ∩ (0, 1] that is less than the currently
held permission amount which is subtracted from it. Thus there exists a
permission amount greater than zero after the subtraction of the wildcard
which means the state owns read permission.

Listing 2.4 shows how the example program from Listing 2.3 is encoded in
Boogie.

Listing 2.4: Encoding of inhaling, exhaling and reading with wildcards

0 procedure main ( x: Ref ) returns ( )
1 modifies Heap , Mask ;
2 {
3 var wildcard : r e a l where wildcard > NoPerm ;
4 var perm: Perm ;
5 var v: i n t ;
6

7 / / −− I n i t i a l i z i n g t h e s t a t e
8 Mask := ZeroMask ;
9 assume s t a t e ( Heap , Mask ) ;

10

11 / / −− T r a n s l a t i n g s t a t e m e n t : i n h a l e a c c ( x . f , w i l d c a r d ) −−
12 havoc wildcard ;
13 perm := wildcard ;
14 assume x 6= null ;
15 Mask [ x , f ] := Mask [ x , f ] + perm ;
16 assume s t a t e ( Heap , Mask ) ;
17

18 / / −− T r a n s l a t i n g s t a t e m e n t : e x h a l e a c c ( x . f , w i l d c a r d ) −−
19 perm := NoPerm ;
20 havoc wildcard ;
21 perm := perm + wildcard ;
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2.4. Wildcard Permissions

22 a s s e r t { : msg ” I n s u f f i c i e n t permission to a c c e s s x . f ”}
23 Mask [ x , f ] > NoPerm ;
24 assume wildcard < Mask [ x , f ] ;
25 Mask [ x , f ] := Mask [ x , f ] − perm ;
26 assume s t a t e ( Heap , Mask ) ;
27

28 / / −− T r a n s l a t i n g s t a t e m e n t : v := x . f −−
29

30 / / −− Check d e f i n e d n e s s o f x . f
31 a s s e r t { : msg ” I n s u f f i c i e n t permission to a c c e s s x . f ”}
32 HasDirectPerm ( Mask , x , f ) ;
33 assume s t a t e ( Heap , Mask ) ;
34 v := Heap [ x , f ] ;
35 assume s t a t e ( Heap , Mask ) ;
36 }

Setting up In line 3 the variable wildcard is defined with a positive real
type which is conceptually a sub type of the Perm type. The variables perm

and v are defined for later use. We simplified the encoding of the state
setup, omitting irrelevant details for this explanation. Relevant parts include
the definition of an empty Mask, which represents the mapping from heap
locations to permission amounts. After that the assumption that the initial
state is valid, i.e., that the values stored in the Mask lie between zero and one,
is encoded.

Inhaling The encoding of the inhale statement starts at line 11. First the
wildcard variable is havoced, i.e., from this point on it can non-deterministically
hold any value permitted by its type. This value is then assigned to the previ-
ously declared perm variable. We also assume the given reference to the heap
location to be a valid reference to the heap with the assumption statement
in line 14. Then the Mask is increased on location x.f by the value of perm.
The assumption in line 16 takes care of ensuring that the sum of the initial
permission amount and the wildcard amount cannot exceed 1.

Exhaling The encoding of the exhale statement starts at line 18. First the
previously declared perm variable is instantiated with the value NoPerm, which
is an alias for the real value 0. Then the wildcard variable is havoced which
means from this point on it can hold any positive real value. The space of
possible values can also be limited by assumption statements that exclude
certain ranges as we see later. In the next step the temporary variable perm

is set to be equal to wildcard and since wildcard can hold any positive real
value so too can perm. Now to be able to change the state a check is inserted
to preserve the invariant that a permission amount must never be smaller
than zero. This is done through the assertion in lines 22 and 23. Without
this assertion it would be possible to exhale wildcard permission amounts
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2. Background

without holding any permission thus resulting in negative permission. The
space of possible fractional permission amounts the wildcard variable can
have is limited by the assumption in line 24. This value has to be smaller
than the currently held permission amount. This serves a similar purpose as
the previous assertion since without limiting the range of values a wildcard
can take on, it would be possible to exhale a wildcard that in fact is greater
than the currently held permission amount. After that the Mask storing the
permission amount for location x.f is decreased by the positive permission
amount stored in the variable perm which is equal to the value of wildcard.

Reading Reading is encoded by an assertion that checks whether the Boogie
function HasDirectPerm shown in Listing 2.5 returns true for a given Mask.
We see in the definition that this function returns true if and only if the
mask stores a positive value for a given location. This thus represents read
permission.

Listing 2.5: Simplified read permission encoding

0

1 function HasDirectPerm ( Mask: MaskType , o: Ref , f : F i e l d ) :
bool ;

2 axiom (∀ Mask: MaskType , o: Ref , f : F i e l d •
3 HasDirectPerm ( Mask , o , f )
4 ⇐⇒
5 Mask [ o , f ] > NoPerm
6 ) ;
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Chapter 3

Abstract Wildcards

Wildcards are not unique to Viper. The VeriFast verifier [4] uses a similar
mechanism for representing unspecified permission amounts but implements
a different internal representation. The main goal of this project is to explore
the advantages and disadvantages of a such an alternative wildcard repre-
sentation for Viper, where we place special emphasis on performance. As
mentioned in the previous chapter, we refer to this representation as abstract
wildcards. We aim for an overapproximation of the concrete wildcard behavior
explained in Chapter 2. The encoding of abstract wildcards should be sound
with respect to the current encoding of concrete wildcards, a simplified proof
of which can be found in the next Chapter 4. In this chapter we explain
our motivation for looking into abstract wildcards and show how they differ
semantically and implementation-wise from concrete wildcards.

3.1 Motivation

The concrete wildcard representation stores information, namely concrete
permission amounts for wildcards, which is not necessary to perform most of
their use-cases and thus has potential to be optimized. One such optimization
is used in the Verifast verifier, which represents wildcard permission amounts
abstractly instead of concretely, by setting a Boolean value if there is a
wildcard permission amount held. Instead of fixing a concrete fraction
for wildcard permission amount non-deterministically through existential
quantification, a Boolean value acts as an abstraction for some positive
permission amount in addition to the already held amount. This provides the
inspiration for the examined encoding of abstract wildcards. At an encoding
level, such a representation seems more convenient, as the following example
shows.

It is possible to hold a fraction of a predicate in Viper, for example to model
several threads concurrently reading the same data structure. When a frac-
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3. Abstract Wildcards

tion of a predicate is unfolded, all permissions it contains are multiplied
by the corresponding fraction. Listing 3.1 shows how unfolding a wildcard
amount of the read predicate results in a multiplication of two wildcard
permissions. Both of these wildcard values hold a concrete fractional value
non-deterministically. SMT solvers are notoriously bad at non-linear arith-
metic and thus Carbon implements simplification rules for cases like the
multiplication of wildcard. Carbon simplifies this multiplication to a wildcard
amount. Such an ad hoc optimization is not be necessary with abstract wild-
cards, where the multiplication of a wildcard with any non-zero permission
results, by definition, in an abstract wildcard.

Listing 3.1: Example of permission multiplication for predicates

0 f i e l d f : Int
1

2 predicate read ( x: Ref )
3 {
4 acc ( x . f , wildcard )
5 }
6

7 method main ( x: Ref )
8 requires acc ( read ( x ) , wildcard )
9 {

10 // This unfold multiplies two wildcard permissions ,

11 // resulting in another wildcard permission to x.f,

12 // which allows reading the value of x.f

13 unfold acc ( read ( x ) , wildcard )
14 var x: Int := x . f
15 }

3.2 Formal Definitions

To more formally define what an abstract wildcard is we define some nota-
tions. Let P = [0, 1] ∩Q be the set of permission amounts that can be held
on a heap location.1

To encode abstract wildcards, we introduce a tuple (p, b) ∈ (P× {>,⊥}) \
{(1,>)}, where the first element represents the fractional permission amount
held on a location and the second one represents a wildcard permission
amount. The tuple (1, T) is excluded from the domain since it would repre-
sent a permission amount that is greater than one. For a better understanding
of this encoding, we give a few examples of represented permission amounts
along with their encoding in the Table 3.1.

1This only applies to heap locations. For permission amounts to predicates there is no
upper bound on the permission amount.
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3.3. Encoding

Abstract wildcard
representation

Represented amount

(0,⊥) 0
(0,>) > 0

(1/2,>) > 1/2
(1/1,>) > 1/1 impossible

Table 3.1: Examples of abstract wildcard representation

The execution state of a Viper program thus stores the permission amount on
a heap location by representing it with such a tuple (p, b) ∈ (P× {>,⊥}) \
{(1,>)} for each location.

Reading With this encoding, a state has permission to read a heap location
if and only if the conjunct p > 0

∨
b = > holds in the state for this particular

heap location.

Inhaling When inhaling an abstract wildcard permission amount there are
two cases to consider. If the state holds (1,⊥) permission on the heap
location in question, inhaling a positive permission amount results in owning
a permission amount greater than one and thus lead to an inconsistent state,
where any statement would verify. This however is the intended behavior
and thus for any permission amount the state is transformed by setting the
second element of the tuple to > regardless of the current value of said
element:

(p, b)→ (p,>)

Exhaling Exhaling can lead to verification errors since if there is no permis-
sion held on the heap location, exhaling a positive permission amount like a
wildcard would lead to negative permission. If this is not the case the state
is transformed by setting the second element of the tuple to > and the first
element to zero regardless of the current value of said element:

(p, b)→ (0,>)

3.3 Encoding

There are several ways one could encode abstract wildcards in Boogie. We
explored two of these approaches. The first was to encode the structure of
a tuple as axiomatized Boogie functions. This allows to change the type of
permission values in the encoding. The second approach represents the tuple
as two distinct Boogie masks. This section will explain these two approaches
in more detail.

13



3. Abstract Wildcards

3.3.1 Representing Tuples in Boogie

Our first idea was to redefine the type of permission values in the Boogie
encoding of Viper programs. The Perm type is currently used as an alias for
real numbers and there is no tuple type in Boogie. So we added a tuple type
together with axiomatized functions defining the operations we needed to
interact with them such as fst(t) and snd(t) that return the first and second
element of the given tuple t respectively. This encoding can be seen in Listing
3.2.

Listing 3.2: Encoding tuples in Boogie

0 type Tuple A B ;
1

2 function tuple<A, B>(a : A, b: B ) : Tuple A B ;
3 function f s t <A, B>(p: ( Tuple A B ) ) : A;
4 function snd<A, B>(p: ( Tuple A B ) ) : B ;
5

6 axiom (∀ <A, B> a : A, b: B •
7 ( f s t ( ( tuple ( a , b ) : Tuple A B ) ) : A) = a
8 ) ;
9 axiom (∀ <A, B> a : A, b: B •

10 ( snd ( ( tuple ( a , b ) : Tuple A B ) ) : B ) = b
11 ) ;
12 axiom (∀ <A, B> p: ( Tuple A B ) •
13 ( tuple ( ( f s t ( p ) : A) , ( snd ( p ) : B ) ) : Tuple A B ) = p
14 ) ;
15

16 type Perm = Tuple r e a l bool ;

The fst function is defined through the axiom in line 6 which states that
if we compose the tuple creation function tuple with the fst function, the
result is the second input to the tuple function. snd is defined analogously.
We then defined the type Perm to be such a tuple that holds a real and a
Boolean value. This definition can be seen in line 16 in Listing 3.2.

For summing up permission values represented as these Boogie tuples we
introduced the function sumPerm that is axiomatized to only return true if and
only if the result parameter is equal to the tuple that holds the sum of the
two first elements of the summands in its first element and the disjunction of
the second elements of the two summands in the second. The encoding can
be seen in Listing 3.3. This can be used for inhaling permission amounts with
the abstract representation and a similar function would have to be encoded
for subtracting these permission tuples from one another for exhaling.
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Listing 3.3: Encoding of sum function for tuples

0 function sumPerm( r e s u l t : Perm , summand1: Perm , summand2: Perm
) : bool ;

1 axiom (∀ r e s u l t : Perm , summand1: Perm , summand2: Perm •
2 sumPerm( r e s u l t , summand1 , summand2)
3 ⇐⇒
4 r e s u l t = tuple (
5 f s t (summand1) + f s t (summand2) ,
6 snd (summand1) ∨ snd (summand2)
7 )
8 ) ;

Because this change affects every feature that interacted with the permission
system and initial performance tests indicated a worsening, we abandoned
this strategy and instead focused on the idea of using a second Boolean mask
for representing tuples.

3.3.2 Adding a Boolean Mask

Since the concrete wildcard encoding uses masks to store permission amounts
to heap locations it seems reasonable to add a second mask that represents
our abstract wildcard permission amount. This also has the benefit that the
encoding of concrete wildcards is more decoupled from from the encoding
of abstract wildcards.

We call the additional mask BMask which stands for Boolean mask and is
defined as a mapping from heap locations to Boolean values.

Listing 3.4: Definition of BMask

0 type BMaskType = [ Ref , F i e l d ] bool ;

With this definition in place we are able to define what it means for the
mask pair to be valid as the following listing 3.5 shows. This code snippet
defines an axiomatized Boogie function that takes a Mask and a BMask as
input and outputs true if it is a valid mask pair and false otherwise. A
mask pair is valid if the value of Mask is greater or equal to noPerm, i.e.,
greater or equal to zero, and if it is no predicate field and no wand field the
permission amount is not greater than one. For this we insert the implication
Mask[o, f] = FullPerm =⇒ ¬BMask[o, f] to disallow the combination of
a Mask value of one with a BMask holding the value true, representing a
permission amount greater than one.

15



3. Abstract Wildcards

Listing 3.5: Definition of valid masks

0 function GoodMask( Mask: MaskType , BMask: BMaskType ) : bool ;
1

2 axiom (∀ Mask: MaskType , BMask: BMaskType , o: Ref , f : F i e l d
•

3 GoodMask( Mask , BMask )
4 =⇒
5 Mask [ o , f ] ≥ NoPerm ∧ (
6 (GoodMask( Mask , BMask ) ∧ ¬I s P r e d i c a t e F i e l d ( f ) ) ∧
7 ¬IsWandField ( f )
8 =⇒
9 Mask [ o , f ] ≤ FullPerm ∧ (

10 Mask [ o , f ] = FullPerm
11 =⇒
12 ¬BMask [ o , f ]
13 )
14 )
15 ) ;

Now we can define what it means to be able to read a location in memory.
This is the case if the following disjunction holds. Either BMask on this
location is set to true or the value of Mask on that location is greater than
NoPerm. Listing 3.6 shows the Boogie encoding of this notion. The changes to
the encoding are highlighted.

Listing 3.6: Definition of read permission

0 function HasDirectPerm ( Mask: MaskType , BMask: BMaskType ,
1 o: Ref , f : F i e l d ) : bool ;
2

3 axiom (∀ Mask: MaskType , BMask: BMaskType , o: Ref , f : F i e l d •
4 HasDirectPerm ( Mask , BMask , o , f )
5 ⇐⇒
6 BMask [ o , f ] ∨ Mask [ o , f ] > NoPerm
7 ) ;

Not only do the definitions of these functions and axioms change but also
the encoding of features like reading or inhaling and exhaling of permission
amounts, predicates and quantified permissions. Inhaling and exhaling
predicates is very similar to the corresponding operations on heap locations
and so we omit their exact encoding here. The encoding of abstract wildcards
used with quantified permissions is shown in the next section. We explain
the encoding of inhaling and exhaling abstract wildcard permissions to heap
locations by giving the translation of the simple Viper program in Listing 3.7.
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Listing 3.7: Inhaling, exhaling and reading heap locations with abstract wildcards

0 f i e l d f : Int
1

2 method main ( x: Ref )
3 {
4 inhale acc ( x . f , wildcard )
5 exhale acc ( x . f , wildcard )
6

7 var v: Int := x . f
8 }

This program takes a reference to a heap location x as argument. It then
inhales an abstractly encoded wildcard permission amount to location x.f in
line 4 and exhales such an abstract wildcard in the next line. Finally the heap
location x.f is read. This program verifies in Viper since exhaling a wildcard
permission amount will always leave some fractional permission amount
owned by the state and so this read operation is permitted as explained in
the background Chapter 2. Listing 3.8 shows how this example program is
encoded into Boogie.

Listing 3.8: Boogie encoding of inhaling, exhaling and reading heap locations with abstract
wildcards

0 procedure main ( x: Ref ) returns ( )
1 modifies Heap , Mask , BMask ;
2 {
3 var v: i n t ;
4

5 / / −− I n i t i a l i z i n g t h e s t a t e
6 Mask := ZeroMask ;
7 BMask := ZeroBMask ;
8 assume s t a t e ( Heap , Mask , BMask ) ;
9

10 / / −− T r a n s l a t i n g s t a t e m e n t : i n h a l e a c c ( x . f , w i l d c a r d ) −−
11 assume x 6= null ;
12 BMask [ x , f ] := t rue ;
13 assume s t a t e ( Heap , Mask , BMask ) ;
14

15 / / −− T r a n s l a t i n g s t a t e m e n t : e x h a l e a c c ( x . f , w i l d c a r d ) −−
16 a s s e r t { : msg ” I n s u f f i c i e n t permission to a c c e s s x . f ”}
17 BMask [ x , f ] ∨ Mask [ x , f ] > NoPerm ;
18 BMask [ x , f ] := 0 . 0 0 0 0 0 0 0 0 0 ;
19 BMask [ x , f ] := t rue ;
20 assume s t a t e ( Heap , Mask , BMask ) ;
21

22 / / −− T r a n s l a t i n g s t a t e m e n t : v := x . f −−
23

24 / / −− Check d e f i n e d n e s s o f x . f
25 a s s e r t { : msg ” I n s u f f i c i e n t permission to a c c e s s x . f ”}
26 HasDirectPerm ( Mask , BMask , x , f ) ;
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27 assume s t a t e ( Heap , Mask , BMask ) ;
28

29 v := Heap [ x , f ] ;
30 assume s t a t e ( Heap , Mask , BMask ) ;
31 }

Setting up In Line 3 we declare the variable v that will later hold the value
of the heap location that will be read. Lines 5 to 8 set up the two masks
representing our tuple. Both the Mask and the BMask are initialized to map
every heap location to the value 0 and false respectively. Then the encoding
assumes the initial state to be valid, i.e., that the combination values in the
two Masks for each heap location represent permission amounts between
zero and one.

Inhaling The encoding of the inhale statement starts on line 10. Instead of
havocing a variable so it represents any value the wildcard could take on, as
the concrete encoding does, here we simply assume that the reference x to
the heap location is non null and set the BMask on the location x.f to true.

Exhaling From line 15 on we can see how the exhale statement is encoded.
First there is an assertion that checks that sufficient permission is available
to exhale a wildcard permission amount, i.e, that we hold a permission
amount greater than zero. This amounts to checking whether the state holds
a wildcard permission amount or some positive fractional permission amount
in Mask. The exhale itself does not subtract a havoced permission amount
value from the currently held amount as in the concrete encoding. Instead the
concrete part of the permission, i.e. the value of Mask on that heap location is
set to 0 and the BMask is set to true, thus this state represents some positive
permission amount.

Reading The encoding for a read operation can be seen from line 24 on-
ward. This essentially has the same structure as the encoding of a read
operation in the concrete encoding with the difference that here the func-
tions HasDirectPerm and state have been replaced with the aforementioned
functions that include the BMask as parameters.

3.4 Quantified Permissions Encoding

In this section we describe the encoding of quantified permissions using
abstract wildcards. First we have a look at the encoding of quantified
permissions on the example program given in Listing 3.9.

18



3.4. Quantified Permissions Encoding

Listing 3.9: Quantified permissions example

0 f i e l d f : Int
1

2 method main ( s : Set [ Ref ] )
3 {
4 inhale ∀ r : Ref • { r in s} r in s =⇒ acc ( r . f , wildcard )
5

6 var x: Ref
7 var y: Ref
8

9 assume x in s
10 assume y in s
11 assume x 6= y
12

13 a s s e r t perm ( x . f ) = perm ( y . f )
14 }

Method main takes a set of references s as an argument and inhales for every
reference r in this set a wildcard permission amount on r. Then two variables
x and y of reference type are declared. We assume for both of them that they
are included in the set s and that they are not equal to each other.

In line 13 we assert using permission introspection that the permission held
on on the locations x.f and y.f is the same. This should not be the case since
a wildcard represents not a single fractional value but non-deterministically
takes on some positive fraction permitted by the assumptions. Thus there
exists some fractions that are not equal to each other which means the
assertion is violated.

Listing 3.10 shows a simplified version of the encoding of the inhale statement
in program from Listing 3.9.

Listing 3.10: Simplified encoding of inhaling quantified permissions

0 const unique f : F i e l d ;
1

2 . . .
3

4 function qpRange ( recv : Ref ) : bool ;
5 function invRecv ( recv : Ref ) : Ref ;
6

7 . . .
8

9 var x: Ref ;
10 var y: Ref ;
11 var QPMask: MaskType ;
12 var QPBMask: BMaskType ;
13

14 . . .
15
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16 Mask := ZeroMask ;
17 BMask := ZeroBMask ;
18 assume s t a t e ( Heap , Mask , BMask ) ;
19

20 havoc QPMask ;
21 havoc QPBMask ;
22

23 / / D e f i n e I n v e r s e Func t i on
24 assume (∀ r : Ref •
25 s [ r ] =⇒ qpRange ( r ) ∧ invRecv ( r ) = r
26 ) ;
27 assume (∀ o: Ref •
28 s [ invRecv ( o ) ] ∧ qpRange ( o ) =⇒ invRecv ( o ) = o
29 ) ;
30

31 / / Assume s e t o f f i e l d s i s nonNull
32 assume (∀ r : Ref •
33 s [ r ] =⇒ r 6= null
34 ) ;
35

36 / / D e f i n e p e r m i s s i o n s
37 assume (∀ o: Ref •
38 ( s [ invRecv ( o ) ] ∧ qpRange ( o )
39 =⇒
40 invRecv ( o ) = o ∧
41 QPMask[ o , f ] = Mask [ o , f ] ∧
42 QPBMask[ o , f ]
43 ) ∧
44 (¬( s [ invRecv ( o ) ] ∧ qpRange ( o ) )
45 =⇒ QPMask[ o , f ] = Mask [ o , f ] ∧
46 QPBMask[ o , f ] = BMask [ o , f ] )
47 ) ;
48

49 assume (∀ o: Ref , f 1 : F i e l d •
50 f 1 6= f
51 =⇒
52 Mask [ o , f 1 ] = QPMask[ o , f 1 ] ∧
53 BMask [ o , f 1 ] = QPBMask[ o , f 1 ]
54 ) ;
55 Mask := QPMask ;
56 BMask := QPBMask ;
57 assume s t a t e ( Heap , Mask , BMask ) ;

Setup Quantified permissions are only applicable if the applied function
is injective since the inverse of these functions is needed to get the locations
that are quantified over for defining the permissions to these locations. Thus
line 4 declares a function returning true if the value received lies in the
codomain of the quantified function. Line 5 declares the inverse function
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of the quantified function. These are later instantiated. Lines 9 through 12
declare variables for later use and lines 16 to 18 set up the state as for the
encoding of inhaling wildcard permission amounts on heap locations. In
lines 20 and 21 the two variables QPMask and QPBMask are havoced, so they
non-deterministically hold some value permitted by their type.

Inverse functions The previously declared functions qpRange and invRec get
instantiated in lines 24 to 29. Lines 32 to 34 then additionally assume that
every element in the domain of the quantifed function, in this case s[r] is
not null. Similar to inhaling permission amounts to heap locations directly.

Defining the permissions Lines 36 to 47 then define how much permission
is inhaled and store the corresponding resulting amount in the temporary
masks QPMask and QPBMask. More concretely, in this case where we inhale
a wildcard permission amount, for every reference o, if the origin of that
value lies within the range of the quantified function s, the temporary mask
QPBMask[o,f] is set to equal true and the value of the mask should not change
and thus QPMask[o,f] should equal the value of Mask[o,f] before the inhale.
Otherwise we simply copy the previous wildcard state stored in the two
masks to the temporary masks, thus not changing the permission amount
on these locations. Lines 49 to 54 then make sure that for any field that is
different to the one we refer to in the quantified function the permission
amount stays the same.

Finishing To finish inhaling we set the values of Mask and BMask to their
corresponding temporary masks and then assume that the state is valid as in
the encoding for inhaling permissions on heap locations.

Listing 3.11 shows a simplified version of the encoding of the exhale statement
in program from Listing 3.9 where we omitted the setup and finishing part
since it is the same one as in for inhaling.

Listing 3.11: Simplified encoding of exhaling quantified permissions

0 / / c h e c k i f s u f f i c i e n t p e r m i s s i o n i s h e l d
1 a s s e r t { : msg ” I n s u f f i c i e n t permission to a c c e s s r . f ”}
2 (∀ r : Ref •
3 s [ r ] =⇒ BMask [ r , f ] ∨ Mask [ r , f ] > NoPerm
4 ) ;
5

6 / / c h e c k i f r e c e i v e r r i s i n j e c t i v e
7 a s s e r t { : msg ” Receiver of r . f might not be i n j e c t i v e . ”}
8 (∀ r : Ref , r 1 : Ref •
9 ( r 6= r 1 ∧ s [ r ] ) ∧ s [ r 1 ] =⇒ r 6= r 1

10 ) ;
11

12 / / a s s u m p t i o n s f o r i n v e r s e o f r e c e i v e r r
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13 assume (∀ r : Ref •
14 s [ r ] =⇒ qpRange ( r ) ∧ invRecv ( r ) = r
15 ) ;
16 assume (∀ o: Ref •
17 s [ invRecv ( o ) ] ∧ qpRange ( o ) =⇒ invRecv ( o ) = o
18 ) ;
19

20 / / assume p e r m i s s i o n u p d a t e s f o r f i e l d f
21 assume (∀ o: Ref •
22 ( s [ invRecv ( o ) ] ∧ qpRange ( o )
23 =⇒ invRecv ( o ) = o ∧
24 QPMask[ o , f ] = 0 ∧ BMask [ o , f ]
25 ) ∧
26 (¬( s [ invRecv ( o ) ] ∧ qpRange ( o ) )
27 =⇒ QPMask[ o , f ] = Mask [ o , f ] ∧
28 QPBMask[ o , f ] = BMask [ o , f ] )
29 ) ;

Check enough permission When exhaling permissions, the available amount
on each location must at least be positive. This is what lines 0 through 4
assert. It will throw a verification error if at least one location used in the
quantified function does not hold a positive permission amount.

Inverse functions Lines 12 to 18 do the same thing as in the inhale case. But
when exhaling we additionally throw a verification error if the quantified
function is not injective. This is encoded in lines 6 to 10.

Defining the permissions The permission updating also works the same
way as in the inhale case, with the difference that instead of adding a wildcard
permission, we define the temporary mask QPMask to equal 0 and QPBMask to
be true.

3.5 Permission Introspection

Permission introspection is a means for reading the permission amount of
a heap location held by the state at a given program location. The abstract
wildcard encoding we implemented is incompatible with this permission
lookup as we will explain in this section. Nevertheless we want our new
implementation to be compatible with the full set of Viper statements and
thus we briefly explain our approach for circumventing errors due to this
incompatibility.
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3.5.1 Incompatibility

To show why abstract wildcard permission are incompatible with permission
introspection we need to understand how Carbon encodes it in the current
implementation. The following program in Listing 3.13 shows a program
that inhales a wildcard permission amount on location x.f in its precondition
and then asserts, using permission introspection, whether the permission
held on this location is positive.

Listing 3.12: Permission introspection example

0 method main ( x: Ref )
1 requires acc ( x . f , wildcard )
2 {
3 a s s e r t perm ( x . f ) > none
4 }

The encoding of permission introspection is very simple. Essentially it uses
Mask to read the permission amount stored on the heap location x.f for the
assertion.

Listing 3.13: Permission introspection encoding

0 / / t r a n s l a t i n g s t a t e m e n t : a s s e r t perm ( x . f ) > none
1 a s s e r t { : msg ” Asser t ion perm ( x . f ) > none might not hold . ”}
2 NoPerm < Mask [ x , f ] ;

We could implement a similar interface for abstract wildcards, where the
programmer could specify the tuple representing the abstract permission
amount. Then the encoding could be changed to read both masks and
compare the two tuples instead of fractions. However, this would change the
programming interface, which is not what we want to do in this project. But
even this change would not solve the incompatibility of abstract wildcards
with permission introspection.

The issue lies in the overapproximation of abstract wildcards. We can come
up with examples as the following in Listing 3.14 that show how abstract
wildcards when used in conjunction with permission introspection are not
sound with respect to concrete wildcards.

Listing 3.14: Example of incompatibility of abstract wildcards and permission introspection

0 method main ( x: Ref , y: Ref )
1 requires acc ( x . f , 1/2)
2 {
3 exhale acc ( x . f , wildcard )
4

5 a s s e r t perm ( x . f ) < 1/2
6 }
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This program inhales half permission to heap location x.f in its precondition
and then exhales a wildcard permission amount. Using concrete wildcards
the assertion in line 5 passes since we can be sure that the owned permission
amount is less than half. Using abstract wildcards on the other hand leads
to a verification error since after exhaling a wildcard we get the abstract
permission amount (0,>) which means the state could hold a permission
amount greater than 1/2 for all we know.

3.5.2 Possible Implementation Options

There are several ways one could implement a compatibility layer between
abstract and concrete wildcard permissions.

Implicit Conversion One approach would be to implicitly convert any ab-
stract wildcard to a concrete wildcard before looking up the permission value
in the mask. It would allow for very fine grained intervention in incompati-
ble cases but it has the drawback that since abstract wildcard permissions
overapproximate concrete wildcards, there are cases where the encoded per-
mission amount would not be losslessly convertible to a concrete permission
amount. The previously shown example in Listing 3.14 also works as a
counter example in this case. This approach is thus not a complete solution
and would still rely on some other technique to ensure full compatibility of
abstract wildcards and permission introspection.

Syntactic Analysis Another solution is to use static syntactic analysis to
find every field and predicate which is used with a perm and with a wildcard

keyword. For every such field or predicate we use the concrete wildcard,
which is compatible with permission introspection. For all others it is safe
to use abstract wildcards. This approach is much more coarse grained and
is likely to overapproximate the cases where such a conversion actually is
necessary. The reason for using fields for the syntactic analysis and not
heap locations like x.f is that static syntactic analysis cannot handle variable
aliases which means a naive approach like this will not consider aliases of
heap locations that are used in an incompatible way.

We chose to implement the syntactic analysis approach for this project since
it is easier to implement than a more fully fledged solution. For this we
modified the Viper parser by adding the functionality for checking and
choosing the appropriate encoding strategy per field and predicate.

3.6 Optimizing Concrete Wildcards

While implementing the abstract wildcard we came across some errors and
inefficiencies of the concrete wildcard implementation. There was an error in
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the encoding of concrete wildcards, allowing the program in Listing 3.9 to
be verified without errors or warnings. We fixed this error not just for the
encoding of abstract wildcards, but also for concrete wildcards.

Furthermore, there were a lot of cases where the encoding for inhaling or
exhaling wildcard permission amounts would check whether a wildcard
permission amount is greater than zero, which is true by its definition and is
thus unnecessary. We removed all of these checks for both encodings.

The Carbon back-end implementation also inserted assertions for ensuring
correct behavior of wildcards which overlapped with other checks for whether
sufficient permission is held. We simplified all of these cases, eliminating
duplication of these checks.

25





Chapter 4

Simplified Proof of Soundness

We give a proof sketch to show why abstract wildcards correctly overapproxi-
mate the concrete wildcard encoding. For this we consider a simplified Viper
semantics that only includes one heap location that we call x. f , where x is
a reference and f is a field. We also simplify the set of Viper statements V
to not include the perm keyword that is used for permission introspection
since it is incompatible with the abstract wildcard encoding as mentioned in
the previous Chapter 3. We believe this captures the core ideas of the proof
and it should be straightforward to adapt it to the general setting.

We use induction over Viper statements s ∈ V for this proof. The notations
we use are given in the next section and the after that we introduce some
helping lemmas.

4.1 Notations

Permission amounts Let P = [0, 1] ∩Q be the set of permission amounts
that can be held by the state on the heap location x. f .

Viper execution states Let Sc ∈ P(P) and Sa ∈ P((P×{>,⊥}) \ {(1, True)})
be the set of execution states of a Viper program using the concrete and ab-
stract encoding respectively.1 For the tuple p ∈ Sa we refer to the first element
of p as p[0] and to the second as p[1].

Semantics We define the function semx : P(Sx)×V 7→ P(Sx)| f ailure where
Sx is the set of execution states using encoding x ∈ {a, c} which stands for
abstract and concrete respectively. V is the set of Viper statements and f ailure
is the designated state for failed verification.

1Even though in our simplified state model we do not have non-determinism, we still
need to account for it for the general case (where heap locations have values and thus the
value of x.f is sometimes havoced), hence Sa is a set of states.
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semx(Φx, s) = f ailure if the execution of statement s in some state ϕx ∈ Φx ⊆
Sx leads to a verification error. Otherwise, semx(Φx, s) is the set of states that
we reach after the execution of statement s. For semc(Φc, s) we can write the
output set of states as ranges in P. We partially define semx as follows.

The semantics of sequential composition of Viper statements s1, s2 ∈ V is
defined as follows.

semx(Φx, s1; s2) =

{
f ailure if f ailure = semx(Φx, s1)

semx(semx(Φx, s1), s2) otherwise

The semantics of inhale acc(x.f, wildcard) is defined as follows.

sema({ϕa}, inhale acc(x.f, wildcard)) =

{
{} if ϕa = (1,>)
{(ϕa[0],>)} otherwise

semc({ϕc}, inhale acc(x.f, wildcard))

= {p′.p′ = ϕc + p ∧ p′ ≤ 1∧ 0 < p ∧ p ∈ P}
= (ϕc, 1]

The semantics of exhale acc(x.f, wildcard) is defined as follows.

sema({ϕa}, exhale acc(x.f, wildcard)) =

{
f ailure if ϕa = (0,⊥)
{(0,>)} otherwise

semc({ϕc}, exhale acc(x.f, wildcard))

=

{
f ailure if ϕc = 0
{p′.p′ = ϕc − p ∧ 0 < p′ ∧ 0 < p ∧ p ∈ P} otherwise

=

{
f ailure if ϕc = 0
(0, ϕc) otherwise

We define semx(Φx, s) for sets of states Φx ⊆ Sx as follows.

semx(Φx, s) =

{
f ailure if ∃ϕx ∈ Φx.semx({ϕx}, s) = f ailure⋃

ϕx∈Φx
semx({ϕx}, s) otherwise

Permission to read x.f To capture a state owning read permission we
define the function canReadx : Sx 7→ {>,⊥} for x ∈ {a, c}.

canReada({ϕa})⇔ 0 < ϕa[0]
∨

ϕa[1] (4.1)
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canReadc({ϕc})⇔ 0 < ϕc(4.2)

canReadx(Φx) =
∧

ϕx∈Φx
canReadx({ϕx})(4.3)

Coupling invariant Let the coupling invariant R(Φ) : Sa 7→ Sc we use for
the induction proof be defined as follows. This function essentially converts a
set of states in the abstract wildcard encoding to a set of states in the concrete
wildcard encoding. Since the output is a set of concrete states we can also
describe this set as a range.

R({ϕa}) =
{
{ϕa[0]} if ϕ[1] = ⊥
{p′.p′ = ϕa[0] + p ∧ p′ ≤ 1∧ 0 < p ∧ p ∈ P} if ϕ[1] = >

=

{
{ϕa[0]} if ϕ[1] = ⊥
(ϕa[0], 1] if ϕ[1] = >

R(Φa) =
⋃

ϕa∈Φa

R({ϕa}) (4.4)

4.2 Preparation

We prove that any Viper statement s ∈ V that is encoded with our abstract
wildcard encoding and verifies also verifies statement s in any state over-
approximated by the abstract wildcard encoding in the concrete wildcard
encoding. So we prove the following statement where sema(Φx, s) = Φ′x
means that statement s in any state in Φx will not fail since f ailure 6⊆ Sa.

∀s ∈ V.∀Φa, Φ′a ⊆ Sa.sema(Φa, s) = Φ′a ⇒ semc(R(Φa), s) ⊆ R(Φ′a) (4.5)

As mentioned above, we prove the statement by induction over Viper state-
ments s ∈ V. For this we use the following induction hypothesis.

IH(s) :=∀Φa, Φ′a ∈ Sa.sema(Φa, s) = Φ′a
⇒ semc(R(Φa), s) ⊆ R(Φ′a)

(4.6)

To simplify the induction proof we prove the following lemma that allows us
to prove the induction cases for abstract states and then generalize it to sets
of abstract states.
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Lemma 4.1 If we can show that for any statement s ∈ V and states ϕa, ϕ′a ∈ Sa
the abstract wildcard encoding is sound with respect to the concrete encoding then it
is also sound for any set of states Φa, Φ′a ⊆ Sa, i.e.,

∀s ∈ V.
(∀ϕ′a ∈ Sa.Φ′′a ⊆ Sa.sema({ϕa}, s) = Φ′′a ⇒ semc(R({ϕa}), s) ⊆ R(Φ′′a ))
⇒ ∀Φa, Φ′a ⊆ Sa.sema(Φa, s) = Φ′a ⇒ semc(R(Φa), s) ⊆ R(Φ′a)

holds.

Proof Let s ∈ V be an aribtrary Viper statement. We assume the left hand
side of the implication, i.e., ∀ϕ′a ∈ Sa.∀Φ′′a ⊆ Sa.sema({ϕa}, s) = Φ′′a ⇒
semc(R({ϕa}), s) ⊆ R(Φ′′a ). Then we assume that sema(Φa, s) = Φ′a holds.
From this we can deduce the following.

(∀ϕ′a ∈ Sa.∀Φ′′a ⊆ Sa.sema({ϕa}, s) = Φ′′a
⇒ semc(R({ϕa}), s) ⊆ R(sema({ϕa}, s))) (4.7)

⇒
⋃

ϕa∈Φa

semc(R({ϕa}), s) ⊆
⋃

ϕa∈Φa

R(sema({ϕa}, s)) (4.8)

⇔ semc(
⋃

ϕa∈Φa

R({ϕa}), s) ⊆ R(
⋃

ϕa∈Φa

sema({ϕa}, s)) (4.9)

⇔ semc(R(
⋃

ϕa∈Φa

{ϕa}), s) ⊆ R(sema(
⋃

ϕa∈Φa

{ϕa}, s)) (4.10)

⇔ semc(R(Φa), s) ⊆ R(sema(Φa, s)) (4.11)
⇔ semc(R(Φa), s) ⊆ R(Φ′a) (4.12)

For Implication 4.7 we expanded the definition of Φ′′a on the right hand side.
Implication 4.8 follows from set theory. From the definition of semx and R
the equivalences 4.9 and 4.10 follow. Step 4.11 rewrites Φa and Step 4.12
follows from the assumption sema(Φa, s) = Φ′a.

This proves the lemma. �

We give the prove for the soundness of reading permissions here as a lemma
since this operation does not fit the induction proof structure properly.

Lemma 4.2 Reading permissions in the abstract encoding are sound with respect to
the concrete encoding, i.e.,

∀Φa ⊆ Sa.canReada(Φa)⇒ canReadc(R(Φa))

Proof For the correct verification of s using the concrete wildcard encoding,
every concrete state represented by the abstract encoding must hold a positive
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4.3. Proof

value. We first show that the right hand side holds for any singleton state
Φa = {ϕa} by considering two cases. We assume the left hand side of the
implication. Thus we know that ϕa[0] > 0

∨
ϕa[1] = > holds. To prove that

the right hand side follows we use Equation 4.1.

1. Case: ϕa[1] = ⊥
ϕa[0] > 0 must hold since otherwise canReada({ϕa}) would not hold.
With the definition of R we get canReadc(R(ϕa)) = canReadc({ϕa[0]}).
Expanding the definiton of canReadc we further get canReadc({ϕa[0]}) =
ϕa[0] > 0 = > and thus the right hand side holds which concludes this
case.

2. Case: ϕa[1] = >
Any ϕc ∈ R(ϕa) = (ϕa[0], 1] must be positive since 0 ≤ ϕa[0] holds.
This means canReadc(ϕc) = > holds for any such ϕa and thus
canReadc(R(ϕa)) = > holds by using the definition of R.
This concludes the second case. �

Let Φ′a ⊆ Sa be some arbitrary set of abstract states using the abstract
wildcard encoding. We assume the left hand side of the implication and with
Equation 4.1 we get canReada(Φ′a) =

∧
ϕ′a∈Φ′a canReada({ϕ′a}). We already

proved that for any state ϕa ∈ Sa the implication holds and thus we know∧
ϕ′a∈Φ′a canReada({ϕ′a})⇒

∧
ϕ′a∈Φ′a canReadc(R({ϕ′a})) holds. The right hand

side of this implication is equivalent to
∧

ϕ′c∈R(Φ′a) canReadc({ϕ′c}) which can
then be transformed into canReadc(R(Φ′a)) using Equation 4.1 which proves
the lemma.

4.3 Proof

We show IH(s1 ; s2), IH(inhale acc(x.f, wildcard))
and IH(exhale acc(x.f, wildcard)) only.

1. Case s = s1; s2
We fix s = s1; s2 for some arbitrary statements s1, s2 ∈ V. Let Φa, Φ′a ⊆
Sa be some arbitrary sets of abstract states. We assume the left hand
side of IH(s1; s2), i.e., sema(Φa, s1; s2) = Φ′a holds and prove the right
hand side semc(R(Φa), s1; s2) ⊆ R(Φ′a).

From sema(Φa, s1; s2) = Φ′a we know that s1 in state Φa does not fail
since otherwise sema(Φa, s1; s2) = f ailure would hold. We can thus
deduce that semc(R(Φa), s1; s2) = semc(semc(R(Φa), s1), s2).

Using IH(s1) we know that semc(R(Φa), s1) ⊆ R(Φ′′a ) where Φ′′a =
sema(Φa, s1). Plugging this into the equation gives us semc(R(Φ′′), s2)
which when applying IH(s2) yields semc(R(Φ′′), s2) ⊆ R(Φ′′′a ) where
Φ′′′a = sema(Φ′′a , s2).
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4. Simplified Proof of Soundness

To conclude this case we need to show that Φ′′′a = Φ′ holds. This is the
case since Φ′′′a = sema(Φ′′a , s2) = sema(sema(Φa, s1), s2) = sema(Φa, s1; s2) =
Φ′ and thus semc(R(Φa), s1; s2) ⊆ R(Φ′a) holds.

2. Case: s = inhale acc(x.f, wildcard)

We fix s = inhale acc(x.f, wildcard).
First we prove that sema(Φa, s) = Φ′a ⇒ semc(R(Φa), s) ⊆ R(Φ′a) holds
for some arbitrary singleton abstract state ϕa ∈ Sa and then generalize
to arbitrary set of states Φa ⊆ Sa from this.

We distinguish three cases.

• ϕa[0] = 1
ϕa[1] = ⊥ holds because otherwise ϕa would not be a valid state
in Sa. Thus Φ′a = sema({ϕa}, s) = {(ϕa[0],>)} = {} holds, as
well as R({ϕa}) = {ϕa[0]} = {1} . From this semc(R({ϕa}), s) =
semc({1}, s) = {} follows from the definition of semc which proves
IH(s).

• ϕa[0] < 1
∧

ϕa[1] = >
From the left hand side of the induction hypothesis we know
Φ′a = sema({ϕa}, s) = {(ϕa[0],>)} holds and thus we get R(Φ′a) =
(ϕa[0], 1].

For any ϕc ∈ R({ϕa}) we have that semc({ϕc}, s) = (ϕa[0], 1] and
thus for every such ϕc semc({ϕc}, s) ⊆ R(Φ′a) holds. The union
over all ϕcs of semc({ϕc}, s) is thus also a subset of R(Φ′a) which
means semc(R(Φa), s) ⊆ R(Φ′a) holds which concludes this case.

• ϕa[0] < 1
∧

ϕa[1] = ⊥
From the left hand side of the induction hypothesis we know
Φ′a = sema({ϕa}, s) = {(ϕa[0],>)} holds and thus we get R(Φ′a) =
(ϕa[0], 1].

Since we have R({ϕa}) = {ϕa[0]} we get semc(R({ϕa}), s) =
(ϕa[0], 1] and thus semc(R(Φa), s) ⊆ R(Φ′a) holds.

Applying Lemma 4.1 generalizes this proof to arbitrary sets of abstract
states Φa ⊆ Sa.

3. Case: s = exhale acc(x.f, wildcard)

We fix s = exhale acc(x.f, wildcard).
First we prove that sema(Φa, s) = Φ′a ⇒ semc(R(Φa), s) ⊆ R(Φ′a) holds
for some arbitrary singleton abstract states ϕa ∈ Sa where we fix
Φa = {ϕa} and then generalize to arbitrary states Φa ⊆ Sa from this.

For exhaling wildcard permission amounts there are three cases to
consider.
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4.3. Proof

• Case: ϕa = (0,⊥)
The left hand side of IH(exhale acc(x.f, wildcard)) does
not hold since sema({ϕa}, exhale acc(x.f, wildcard)) = f ailure.
Thus the implication holds trivially.

• Case: ϕa[0] < 1
∧

ϕa[1] = >
We assume the left hand side of the induction hypothesis which
means Φ′a = sema({ϕa}, s) = {(0,>)} holds. We get R({ϕa}) =
(ϕa[0], 1] and with the definition of semc we get semc(R({ϕa}), s) =⋃

ϕc∈(ϕa[0],1] semc({ϕc}, s). The union of all of these ranges is (0, 1]
and thus semc(R({ϕa}), s) = (0, 1].

For R(Φ′a) we get R(Φ′a) = R({(0,>)}) = (0, 1]

To conclude, we have semc(R({ϕa}), s) = (0, 1] ⊆ R(Φ′a) which
proves IH(exhale acc(x.f, wildcard)) for this case.

• Case: ϕa[0] > 0
∧

ϕa[1] = ⊥
We assume the left hand side of the induction hypothesis which
means Φ′a = sema({ϕa}, s) = {(0,>)} holds and thus R(Φ′a) =
R({(0,>)}) = (0, 1] holds too. We get R({ϕa}) = {ϕa[0]} and
with the definition of semc, semc(R({ϕa}), s) = semc({ϕa[0]}, s) =
(0, ϕa[0]). Concluding, the following holds semc(R({ϕa}) = (0, ϕa[0]) ⊆
(0, 1] ⊆ R(Φ′a), which concludes this case.

Applying Lemma 4.1 generalizes this proof to arbitrary abstract states
Φa ⊆ Sa.
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Chapter 5

Evaluation

Our focus during this project was on the performance of the abstract com-
pared concrete wildcard encoding and of course the correctness of the im-
plementation. For this reason we did benchmark testing throughout the
whole project to guide our next steps and used the Viper test suite to find
mistakes. In this chapter we show our approach for evaluating the different
encodings. First we go over our methodology and explain where the data
for our benchmarks came from and then we show our most interesting and
characteristic results.

5.1 Methodology

5.1.1 Implementation

For the implementation of the abstract wildcard we added the keyword
sWildcard to the Viper language. This allowed us to use the concrete wildcard
representation in tandem with our new representation and let us compare
the semantics of two encodings more easily and thus to find errors more
quickly. Because these two representations should be compatible with each
other, this of course added some overhead to the concrete wildcard encoding.
This overhead comes from the fact that for comparing two wildcards, the
Boolean mask also has to be taken into account. This results in an additional
disjunction for such checks which enlarges the state space the SMT solver
has to explore.

5.1.2 Performance Evaluation

To evaluate the performance we measured the execution time of the Boogie
command line tool for input files generated from Viper files by the Carbon
back-end. To automate the task of generating the Boogie input files we wrote
a python script that, when given a folder with Viper input files, automatically
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5. Evaluation

File name Content
wildcard.vpr Copy of input file

sWildcard.vpr Copy of input file where every
wildcard is replaced by

sWildcard

old wildcard.bpl Output for unmodified Viper
implementation

new wildcard.bpl Output for new Viper
implementation using the

wildcard keyword
new sWildcard.bpl Output for new Viper

implementation using the
sWildcard keyword

Table 5.1: Generated files for benchmarking

generates a directory with the files listed in Table 5.1. The three output
Boogie files hold the encoding of the input Viper program each using either
the unmodified version of Viper or the new implementation that enables the
abstract wildcard encoding through the use of the keyword sWildcard.

These generated files are then also automatically benchmarked with a python
script that uses the command line tool hyperfine to measure the execution
time of the Boogie command line tool for each of these files. Hyperfine
is parameterized to run three warmup runs for each command and then
runs it 10 times, measuring the mean, average and standard deviation of the
execution time samples. The machine we ran the benchmarks on has 16GB of
memory, an Intel i7-8550U CPU running at 1.80GHz and runs Manjaro Linux.

5.1.3 Testing

To make sure our implementation works in the intended way, we used the
existing Viper testing infrastructure. For this we extracted all test cases that
used wildcards and syntactically replaced every occurrence of wildcard

keyword with a sWildcard. In addition to that we also introduced our own
test cases. This gave us a quick way to find implementation errors and even
unintended semantic differences.

5.2 Example Programs

To see if there is a noticeable difference in performance between the un-
modified Viper implementation and our new one we constructed example
programs that inhaled and exhaled wildcard permission amounts hundreds
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of times. The results were promising and so we decided to automatically
generate and benchmark them.

These algorithmically generated programs however were not enough to tell
whether there is a significant performance increase for real Viper programs
and thus we needed to get a broader and more meaningful set of samples.
We used the test cases provided by the Viper verification infrastructure as
well as test cases from the test suites of front-end Viper verifiers. The results
of the evaluation of these programs are shown in the next section.

5.2.1 Algorithmically Generated Programs

We automatically generated programs of the form shown in Listing 5.1. The
parameters for the generation were the number of references the method
main takes as parameters and the number of times the program inhales and
exhales for each reference.

Listing 5.1: Algorithmically generated program with three references and n inhale-exhale-blocks

0 f i e l d f : Int
1

2 method main ( r e f 0 : Ref , r e f 1 : Ref , r e f 2 : Ref )
3 {
4 inhale acc ( r e f 0 . f , wildcard )
5 inhale acc ( r e f 1 . f , wildcard )
6 inhale acc ( r e f 2 . f , wildcard )
7 exhale acc ( r e f 0 . f , wildcard )
8 exhale acc ( r e f 1 . f , wildcard )
9 exhale acc ( r e f 2 . f , wildcard )

10

11 . . .
12

13 inhale acc ( r e f 0 . f , wildcard )
14 inhale acc ( r e f 1 . f , wildcard )
15 inhale acc ( r e f 2 . f , wildcard )
16 exhale acc ( r e f 0 . f , wildcard )
17 exhale acc ( r e f 1 . f , wildcard )
18 exhale acc ( r e f 2 . f , wildcard )
19 }

5.2.2 Sample Programs

The Viper test suite includes many test cases of different lengths and com-
plexities and thus provides a good basis for profiling the perfomance of the
abstract wildcard implementation. In addition to that we also used the Nagini,
Gobra and Vercors test suites to generate sample Viper programs. The only
restriction we had for these programs was that they were parsable. Whether
they raised verification errors or not does not matter for us since it is as
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important for a verifier to rapidly find verification errors as it is to conclude
that the program is correct.

5.3 Results

In this section we show some exemplary results we got from benchmarking
the different programs we had at our disposal.

5.3.1 Algorithmically Generated Programs

We ran benchmarks on the generated programs using our new implemen-
tation of abstract wildcards and the unmodified Viper implementation. To
compute the speed increase of the new implementation with respect to the
unmodified one we divided the execution time of the abstract wildcard im-
plementation by the execution time of the unmodified concrete version for
each of the sample programs. The results can be seen in Figure 5.1 on a linear
and in Figure 5.2 on a logarithmic scale. There we can see that the ratio of
the execution times increases drastically with the number of references used.

5.3.2 Sample Programs

We used the previously presented benchmark infrastructure to measure the
run-times of all of these programs for three cases.

• The unmodified Viper implementation using the wildcard keyword

• The new implementation using the wildcard keyword

• The new implementation using the sWildcard keyword

The new implementation using the wildcard keyword is interesting for us
to test since it works with the overhead of a having a second mask to check in
every permission amount lookup. On the other hand it also implements some
performance optimizations to the concrete wildcard encoding as mentioned
in Chapter 3. Our other programs did not show such a stark performance
improvement as the artificial examples. For these programs we will not
explain in detail what they prove since this would be out of the scope of this
project.

In Figure 5.3 we see several examples with moderate execution time.

Viper program 0082 In the test suite of Viper there are a lot of small
programs that test specific features of Viper. A typical one of these is the
program 0082. It consist of 14 lines of code that declare one method and
one predicate that is used within the method. For such small programs we
could not measure a noticeable difference in verification speeds using either
encoding.
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5.3. Results

Figure 5.1: Plot of execution time ratios for algorithmically generated programs

Figure 5.2: Log scale plot of execution time ratios for algorithmically generated
programs
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Figure 5.3: Benchmarks of programs with moderate verification time

testTranspose The program testTranspose also stems from the Viper test
suite but shows a small performance increase. It uses wildcards in four
places in method preconditions using quantified permissions.

unionfind Also from the test suite we got the program unionfind. This shows
quite drastically that there are cases where the abstract wildcard encoding
takes a performance hit. The verification time almost doubles in comparison
to the old implementation as well as the new implementation that optimizes
the concrete wildcard encoding optimized wildcard version. This might be
caused by the additional disjunctions this encoding brings with it but we
were not able to test this hypothesis.

parallel search replace The program parallel search replace was derived from
the Gobra test suite. This is a big program with 1126 lines of code and 14
wildcard uses. This shows exactly the opposite of the unionfind example. The
performance of the abstract wildcard encoded version increases dramatically
with respect to the two concrete versions.

Figure 5.4 shows benchmarks of programs with slower verification speeds.
With these programs the performance differences are more pronounced and
so we use a logarithmic scale for this plot.
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5.3. Results

Figure 5.4: Benchmarks of programs with longer verification time

testTreeWandE2 We found this example in the test suite of Viper. It uses
wildcards in 16 places and has about 500 lines of code and the verification
terminates with errors. The plot shows that the new implementation gets to
the result almost an order of magnitude faster than the old implementation.

TicTacToeMatrix We derived the sample program TicTacToeMatrix from
the Vercors test suite. This program has almost 560 lines of code and uses the
wildcard keyword in 56 places. Abstract wildcards seem to give this program
a huge performance boost over concrete wildcards. It verifies the program
more than five times faster than the old encoding. Also clearly visible here is
the overhead the concrete wildcard faces in the new implementation due to
the introduction of a Boolean mask, the verification of this case takes about
twice as long.

rsl spin lock1 We found the program rsl spin lock1 on the Viper encoding
of RSL Logics examples website. It has about 750 lines of code and uses
wildcards 11 times. It also makes extensive use of permission introspection
which is why every single use of an abstract wildcard with the keyword
sWildcard gets internally converted to a concrete wildcard. For this reason,
the new implementation using either keyword shows such a similar perfor-
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mance. Other than that there the old implementation still seems to be faster
for verifying this program.

heapsort The program heapsort was derived from the Gobra test suite and
serves as a good example to show the overhead the second mask in the
encoding introduces. The new implementation is quite a lot slower when
used with the wildcard keyword as opposed to the sWildcard keyword.
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Chapter 6

Conclusion

We have explored an alternative representation for wildcard permission
amounts we call abstract wildcards. For this we implemented a working
version of the encoding, evaluated it against the existing concrete wildcard
encoding and made it compatible with permission introspection. We also
gave a simplified proof of the soundness of the abstract wildcard encoding
with respect to the concrete encoding that should easily be extensible to a
more general setting.

We saw that for some test cases the verification speeds for programs making
use of abstract wildcards was five to ten times faster than for concrete wild-
cards. For other programs however the verification speed slowed down by
half, but overall the performance difference was quite small. The slowdown
might be explained by the introduction of an additional disjuction in the
encoding of permission amount look-ups but we were not able to test this
hypothesis. Our algorithmically generated examples showed that the abstract
wildcard fares way better when multiple references are used in the same
method. We were not able to find the exact reason for this.

It would be interesting to see how the memory usage for the verification
changes with abstract wildcard permissions since this often seemed like the
source for inconclusive test results. There is still some work to be done to
ensure the compatibility of abstract wildcards and permission introspection
in Viper. The solution we chose is too restrictive and programs that use
permission introspection barely benefit from the use of abstract wildcards or
even get slowed down by it.

For the implementation of abstract wildcards we introduced the sWildcard

keyword to the Viper language, which has the same purpose as the already
existing wildcard keyword. If abstract wildcards were to be used it would
make sense to keep only one keyword for wildcards since having more
keywords introduces more complexity to the programming interface. The
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6. Conclusion

encoding to be used by Viper could then be chosen behind the scenes.

Not just the addition of a second keyword for wildcards leads to more
complexity, but also the introduction of abstract wildcards into the Carbon
back-end. The code-base gets more complex by adding such an additional
feature and is thus more prone to errors and there is more maintenance
necessary.
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