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1 Introduction

Throughout the years, many Hoare logics have been developed for proving trace
properties of computer programs. Trace properties, as the name suggests, con-
cern only individual program executions, e.g. functional correctness. However,
many program properties of interest concern more than one program execu-
tion. Such properties are called hyperproperties [Clarkson and Schneider 2008],
e.g. determinism (executing the program twice in the same initial state results
in the same final state) and non-interference [Volpano et al. 1996] (executing
the program twice with the same low-sensitivity inputs results in the same
low-sensitivity outputs). Some special cases, such as 2-safety hyperproperties’,
have been extensively studied, whereas logics specifically designed for handling
broader range of hyperproperties are rather scarce.

The formulae in Hoare logics [Hoare 1969] are the so called Hoare triples
{P}C{Q}, where P (precondition) and @ (postcondition) are assertions and C
is a computer program. A Hoare triple is valid iff executing C in a program
state, satisfying P, results in a program state satisfying ). Hoare logic is an
overapproximating logic, because the set of states satisfying @ is a superset of
the set of reachable states, starting in a state satisfying P and executing C,
i.e. {o € States: Q(0)} D {0’ : Jo € States. P(c) A (C,0) — ¢'}?. Similarly,
we can define underapproximating Hoare triples { P }C{Q}, valid, iff for every
state o', satisfying @, there is a state o satisfying P, s.t. (C,o0) — o, ie.
valid iff {o € States : Q(0)} C {0’ : Jo € States. P(c) A (C,0) — ¢'}. Such
underapproximating Hoare logics have been well developed, e.g. Reverse Hoare
logic [de Vries and Koutavas 2011] and Incorrectness logic [O’Hearn 2019].

IHyperproperties concerning 2 program executions, stating that ”nothing bad will happen”.
Here we use big-step semantic notation (C, o) — o’.



Earlier, we pointed out that extensive research in the field, concerning special
cases of hyperproperties, has also been conducted, e.g. Relational Hoare logic
[Benton 2004] and Cartesian Hoare Logic [Sousa and Dillig 2016]. Now, we shift
our focus on a novel logic, that can reason about arbitrary hyperproperties over
terminating executions, called Hyper Hoare logic [Dardinier and Miiller 2023].
The formulae of Hyper Hoare logic are the so called hyper-triples [P]C[Q)], where
P and @ are assertions over sets of states and C is a computer program. Such
a hyper-triple is valid iff for any set of initial states S that satisfies P, the set of
all final states that can be reached by executing C' in some state from S satisfies
the postcondition Q).

Consider the hyperproperty non-interference, which holds iff Vo, 09, 07, 04 €
States.o1 [ L = o2 | L = (C,01) — o = (C,02) — o = o} | L = o} | L**,
where states are functions from program variables PVAR to values and L C
PVAR is the set of low-sensitivity variables. Assuming we have only one low
variable [ for simplicity, i.e. L = {l}, a hyper-triple that ensures NIy (C) looks
like this: [V(o1), (02).01(1) = o2(1)|C[V(c)), (c}). 01 (I) = d4(1)], where the pre-
condition V(o1), (02).01(l) = o2(l) desugars® to A\S.Voi,00 € S.01(l) = 02(1)
and the postcondition desugars to \S’.Voi, 04 € S’.01(l) = o4(1). This hyper-
property has been generalized for non-deterministic programs, since the former
formulation is too restrictive for non-deterministic programs, e.g. the follow-
ing program C' 2 (I := h + randUnboundedInt()) is information flow secure,
but NIg;(C) does not hold. The generalization is often formalized as general-
ized non-interference [McCullough 1987; Mclean 1996], where GNIy(C') holds
iff Vo1,02,01,05 € States.Jo’ € States.o1 | L = o2 [ L = (C,01) — 0] =
(Cio0) > 0o =0,|L#0dh| L= (C,o1) = 0c"No'"|L=0}]L. Assuming
we have only one low variable [, i.e. L = {l}, and that C does not modify
variable h for simplicity, a hyper-triple that ensures GNI.(C) looks like this:
V(n), (02). 1(1) = o5 (DICI (o), (). 30"). o' (h) = o4 (h) A o' (1) = or4(D)]. To
the best of our knowledge, Hyper Hoare logic is the only Hoare logic that
can simultaneously prove GNI; (V3-hyperproperty) and disprove GNI; (3v-
hyperproperty) for arbitrary L.

The above mentioned Hoare logics cannot reason about pointer programs
without being cumbersome at best. A more elegant approach, based on local
reasoning, has been developed, called Separation logic [Reynolds 2002]. Most,
if not all, of the more well-established Hoare logics, have been successfully ex-
tended to support heap operations, based on the key features of Separation logic,
e.g. Incorrectness Separation logic [Raad et al. 2020] and Relational Separation
logic [Yang 2007].

3Here f | A is the restriction of function f to the set A, i.e. flA = fnN (A X Rng(f)).
4We consider implication to be right-associative.
5Recall that we defined hyper-triples’ assertions to be over set of states.



2 Approach

Hyper Hoare logic has been shown to be sound, complete and has been demon-
strated to capture and go beyond the properties supported by numerous exist-
ing correctness and incorrectness logics. Nevertheless, said logic cannot reason
about pointer programs, which makes it inapplicable for the majority of the
real-world scenarios. Thankfully, history has shown that, in general, Hoare log-
ics can be extended to support heap operations, drawing upon the fundamental
principles of Separation logic.

3 Goals

3.1 Core Goals

Considering the above mentioned Separation logics, clear goals emerge for our
pursuit of extending Hyper Hoare logic to Hyper Separation logic:

e Add a heap to the state model and its core operations to the programming
language: cons, lookup, update and free. Define small-step semantics for
our programming language;

e Add "points to” to the assertion language and develop rules based on
semantic assertions for cons, lookup, update and free;

e Define separation conjunction between hyper-assertions and prove a frame
rule sound;

e Apply the logic on interesting examples, come up with new ones;
e Compare with Relational Separation logic and Outcome logic;

e Formalize everything in Isabelle/HOL [Nipkow et al. 2002].

The primary challenge in achieving the core goals of the project would be to
define separating conjunction in an elegant way and to provide a sound frame
rule.

3.2 Extension Goals

e Explore an extension of the logic to handle parallelism

— Add parallel composition and atomic blocks to the programming lan-
guage;
— Explore the soundness of the Par rule;

— Explore the soundness of invariants with atomic blocks;

e Explore a relational extension of HHL (with multiple programs).
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